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a b s t r a c t

A unifying approach is presented for developing mathematical models of microdialysis that are appli-
cable to both in vitro and in vivo situations. Previous models for cylindrical probes have been limited
by accommodating analyte diffusion through the surrounding medium in the radial direction only, i.e.,
perpendicular to the probe axis, or by incomplete incorporation of diffusion in the axial direction. Both
radial and axial diffusion are included in the present work by employing two-dimensional finite ele-
ment analysis. As in previous models, the nondimensional clearance modulus (�) represents the degree
to which analyte clearance from the external medium influences diffusion through the medium for
systems exhibiting analyte concentration linearity. Incorporating axial diffusion introduces a second
dimensionless group, which is the length-to-radius aspect ratio of the membrane. These two param-
iffusion eter groups uniquely determine the external medium permeability, which is time dependent under
transient conditions. At steady-state, the dependence of this permeability on the two groups can be
approximated by an algebraic formula for much of the parameter ranges. Explicit steady-state expres-
sions derived for the membrane and fluid permeabilities provide good approximations under transient
conditions (quasi-steady-state assumption). The predictive ability of the unifying approach is illustrated
for microdialysis of sucrose in vivo (brain) and inert media in vitro, under both well-stirred and quiescent

conditions.

. Introduction

Application of microdialysis for in vivo sampling of drugs and
iffusible constituents of tissue has benefited from the existence
f mathematical models relating probe efficiencies to fundamen-
al parameters characterizing probe geometry, analyte diffusion
nd tissue physiology. The models clarify the important interplay
etween analyte diffusion through and elimination from the tissue
urrounding the microdialysis probe. To achieve simplicity in the
escriptions, most of the existing models [1–9] assume cylindri-
al symmetry about the probe axis and restrict analyte diffusion
o the radial direction perpendicular to the membrane. However,
his restriction leads to a conundrum that the differential mass
alance equations for the tissue do not admit useful steady-state
olutions in the pure diffusion limit where there is no analyte
limination from the tissue. As a consequence, the purely radial

iffusion models have limitations when applied to the analogous
uasi-steady-state in vitro condition of a probe situated in an inert
uiescent medium. Probes are typically immersed in an inert solu-
ion in vitro to assess their performance before or after in vivo use.
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The lack of models jointly applicable to common in vitro and in vivo
situations is inherently unsatisfactory.

As a partial means of overcoming this limitation, an alternative
model was proposed in which the probe is replaced by an equiv-
alent sphere of the same area as the outer surface of the probe
[3]. The primary appeal of this approach is that nontrivial solutions
to the equations for diffusion in spherical geometry do exist. The
applicability of this equivalent sphere model was postulated, but
not convincingly demonstrated. Uncertainty about the quantitative
validity of this approximation has limited its usefulness.

Instead of employing models posed in different geometries, a
more rational scheme is to construct models in two- or three-
dimensional geometries that would be applicable to a wide range
of operating conditions. In recognizing the desirability of this
goal, Tong and Yuan [10] formulated a two-dimensional model
for in vivo sampling that includes both axial and radial diffu-
sion within the tissue. Their analysis involved simultaneously
simulating analyte transport through tissue, membrane and per-
fusate fluid. The authors elegantly proposed replacing the nominal

membrane length by a larger equivalent length to represent the
two-dimensional effects of diffusion and elimination within the
tissue. This concept has the advantage of retaining in slightly mod-
ified form the closed-form expressions from the previous linear
steady-state model for radial diffusion. However, this empirical
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Nomenclature

c analyte concentration
C normalized two-dimensional analyte concentration

profile
D diffusion coefficient
E extraction fraction
h Amberg and Lindefors function, Eq. (22)
J Bessel functions of the first kind
k clearance rate constant
K modified Bessel functions of the second kind
K equilibrium distribution coefficient
L length
P diffusive permeability
P̂ overall diffusive permeability for the probe and

external medium
q analyte mass flow rate
Q volumetric flow rate
r radial position relative to probe axis
S superficial area of membrane exchange surface
t time
T time constant
u dummy variable of integration
U normalized one-dimensional radial concentration

profile
v velocity
Y Bessel functions of the second kind
z axial position relative to inlet end of membrane

exchange surface

Greek letters
� extracellular volume
� dimensionless ratio of annulus radii, Eq. (9)
� penetration depth, Eq. (24)
� empirical constant in the equivalent membrane

length model, Eq. (36)
� radial position for equivalent spherical probe model
� clearance modulus, Eq. (21)
� dimensionless radial position, Eq. (15)
	 dimensionless time, Eq. (15)
� dimensionless axial position, Eq. (15)

Subscripts
a annulus
cann inner cannula
e external medium, free
ext external medium, total
E equivalent
i inner surface of membrane
in inlet end of membrane exchange surface
m membrane; based on whole membrane volume
o outer surface of membrane
out outlet end of membrane exchange surface or out-

flow tubing
℘ probe (annulus fluid + membrane)
s equivalent spherical probe
ws well-stirred conditions
∞ spatial asymptote in radial or axial direction

Superscripts
1D one-dimensional (radial diffusion)
2D two-dimensional (radial and axial diffusion)
Sph equivalent spherical probe

Diacritical marks
¯ flow-rate-weighted radial average in the annulus

Brackets

[ ] follows a function symbol to indicate the variables

upon which it depends

modification does not exhibit the appropriate character in the
pure diffusion limit and consequently is not generally applicable
to in vitro measurements.

The present approach similarly involves two-dimensional mod-
eling for radial and axial diffusion through the medium external to
the probe. The approach employs approximations that permit the
results to be encompassed within the framework of earlier linear
models [3,7–10]. The outcome is an illustrative unified model of
transient and steady-state microdialysis applicable for both in vivo
and in vitro conditions.

2. Linear microdialysis theory

Microdialysis employs a perfused probe with a solute permeable
membrane that permits exchange between the perfusate solu-
tion and the external medium into which the probe has been
implanted. Differences in free solute concentration between the
external medium and the perfusate promote exchange by diffu-
sion. The membrane is likely to be permeable as well to fluid so
that solute may be carried across the membrane convectively, if
significant transmembrane fluid flow takes place. Although trans-
membrane convection can be incorporated [11,12], the model to be
presented is based on the customary assumption that diffusion is
the dominant mechanism within the membrane. A number of addi-
tional assumptions are invoked in common with earlier versions
[3,5,9]. Principally, these are simplifications to render the govern-
ing equations linear with respect to analyte concentration, such
as assuming that analyte clearance processes depend linearly on
analyte concentration and physical properties are independent of
concentration. The presentation begins with an overview of the
previous modeling approach that restricted diffusion within the
external medium to the radial direction. This provides the con-
text for the subsequent generalization that adds the effects of axial
diffusion.

2.1. Steady-state radial diffusion model

Diffusion of analyte across the membrane is driven by the differ-
ence in free concentrations, ci and co at the inner and outer surfaces,
respectively. Let the membrane permeability, Pmo , be the coeffi-
cient of proportionality between the concentration difference and
the analyte mass flow rate, q. For steady-state conditions at any
axial position, z, the outward differential mass flow rate is repre-
sented by

dq[z] = 2�ro · Pmo · (ci[z] − co[z]) · dz. (1)

The subscript, “o”, indicates that the permeability is referenced
to the outer surface area of the membrane of outer radius, ro. The
analyte flux into the membrane is supplied by the perfusate flow-
ing in the annular space between the membrane and the internal
cannula. An alternate expression for the differential rate is then
dq[z] = 2�ro · Pao · (c̄a[z] − ci[z]) · dz, (2)

where c̄a is the flow weighted annulus bulk concentration and Pao

is the permeability in the annular fluid. Similarly, for the mass flow
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rom the membrane into the external medium,

q[z] = 2�ro · Pexto · (co[z] − ce∞ ) · dz. (3)

In the above, it is assumed that the free concentration in the
xternal medium far from the probe is spatially uniform, as indi-
ated by ce∞ , and also that all three permeabilities are uniform, i.e.,
ndependent of z. Combining Eqs. (1)–(3) leads to

q[z] = 2�ro · P̂o · (c̄a[z] − ce∞ ) · dz, (4)

n which P̂o is an overall permeability,

ˆo ≡
(

1
Pao

+ 1
Pmo

+ 1
Pexto

)−1
. (5)

Equating the mass flow rate, q, to the rate of analyte loss from
he perfusate gives,

Qa
d c̄a

dz
= 2�ro · P̂o · (c̄a − ce∞ ), (6)

ith Qa denoting the volumetric flow rate of the annulus fluid. Inte-
rating over the length, Lm, of the portion of membrane accessible
or analyte permeation yields the following exponential expression
or the efficiency of extracting the analyte from the perfusate,

≡ cin − cout

cin − ce∞
= 1 − exp

[
− P̂o · So

Qa

]
, (7)

n which cin = c̄a[0] and cout = c̄a[Lm] are the perfusate inflow and
ialysate outflow concentrations, respectively, and So = 2� · ro · Lm is
he accessible area of the outer surface of the membrane. For ana-
yte diffusion and elimination rates in the external medium that are
inear in analyte concentration, Eq. (7) is independent of the direc-
ion of diffusion. In other words, the extraction efficiency should
e the same for sampling analyte from the external medium as for
elivering analyte from the perfusate to the external medium.

Except in the absence of an internal cannula, the magnitude of
he annulus permeability, Pao , in Eq. (2) can be estimated from the
ollowing modified form of an asymptotic expression obtained by
ungay et al. [12],

ao ≈
(

2.0 + 0.42 · �

1 − �

)
·
(

Da

ro

)
, (8)

n which Da is the analyte free solution diffusion coefficient and �
s the annulus radius ratio,

≡ rcann

ri
, (9)

nvolving the outer radius of the cannula, rcann. For probes lacking
n internal cannula the approximate expression reduces to Pao ≈
.83Da/ro. The membrane permeability is given by,

mo = Dm

ro ln[ro/ri]
, (10)

ith Dm being the effective diffusion coefficient for the analyte [9].

.2. Transient radial diffusion model

As shown by Morrison et al. [4] and Chen et al. [7,8], restricting
iffusion to the radial direction renders the governing equations
menable to analytical solutions for transient behavior as well. In
heir approach Morrison et al. [4] invoked a quasi-static approxima-
ion for the probe. Analyte transport in the annulus and membrane
as assumed to adjust much more rapidly to change than the exter-

al medium because of the large differences in capacity for the
nalyte. By neglecting the contribution of diffusion to transport in
he annulus, Chen et al. [7,8] were able to express transient behav-
or in both the membrane and the external medium. The present
reatment is equivalent to that of Morrison et al. [4] in employing
nd Biomedical Analysis 55 (2011) 54–63

steady-state expressions for the annulus and membrane perme-
abilities, Eqs. (8) and (10), but expresses the transient behavior for
the external medium in terms of the permeability. As in the pre-
vious models, the external medium is assumed to consist of two
phases with spatial uniform properties. For in vivo applications the
two phases are the extracellular space and the cellular phase. In the
extracellular space the variation in the free concentration of the dif-
fusible analyte of interest over space and time, t, will be denoted by
ce[r, z, t]. The ratio of the total concentration of the analyte, cext[r, z,
t], to the free concentration will be represented by

Kext ≡ cext

ce
. (11)

This distribution coefficient is taken to be a constant by the
assumption of local equilibrium for any binding and exchange
between extracellular and intracellular compartments [9].

For the radial diffusion model the local variations in the con-
centrations are determined by a differential mass balance for the
analyte of the form

Kext
∂ce

∂t
= Dext

1
r

∂

∂r

(
r

∂ce

∂r

)
− kext · ce, (12)

in which Dext is the diffusion coefficient for the analyte in the exter-
nal medium. The rates of processes that eliminate analyte from the
external medium are assumed to be proportional to the local free
concentration, so that kext is an overall first order rate constant for
these linear clearance mechanisms. The basis for both Dext and kext

is the total volume of the external medium volume, i.e., the sum of
the excellular and cellular volumes [9].

Far from the probe the free extracelluar concentration
approaches a uniform value

ce[r, z, t] → ce∞ as r → ∞. (13)

As in Morrison et al. [4], the distant concentration could vary with
time. For the objectives of this presentation, ce∞ will be considered
a constant. The initial condition takes the distant concentration to
be the uniform value throughout the external medium

ce[r, z, 0] = ce∞ at t = 0. (14)

It is advantageous to redefine the independent variables in
dimensionless form

� ≡ r

ro
, 
 ≡ z

ro
and 	 ≡ t

Text
. (15)

Time is scaled in Eq. (15) relative to the time constant for diffusion
in the external medium,

Text ≡ r2
o · Kext

Dext
. (16)

As noted by Chen et al. [7,8], the separation of variables solution
to Eqs. (12)–(16) can be expressed in terms of a normalized one-
dimensional (1D) radial concentration profile that is independent
of axial position

U[�, 	] ≡ ce[�, 
, 	] − ce∞
ce[1, 
, 	] − ce∞

. (17)

The value of the profile, U, at the membrane interface is

U[1, 	] = 1. (18)

The external medium permeability is related to the diffusive

flux across the membrane interface. In terms of the normalized 1D
profile the relationship can be expressed as

P1D
exto

[	] = −Dext

ro

(
∂U[�, 	]

∂�

)
�=1

. (19)
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Fig. 1. Schematics for two-dimensional (2D) models in which diffusion occurs in
both radial and axial directions. (a) Isolated external medium with a source of uni-
form dimensionless concentration, C = 1, along the membrane interface and C = 0 on
the distant dimensionless boundaries at �∞ = r∞/ro and 
 = ± z∞/ro . (b) Combined
probe (annular fluid and membrane) and external medium. The annular fluid is in
steady, laminar flow at the volumetric rate, Qa , with inlet concentration, C̄a = 1. On
the distant external medium boundaries, C = 0. To aid in visualization, the radial
P.M. Bungay et al. / Journal of Pharmaceu

The following expression for the normalized transient perme-
bility is readily obtained from the solution for U[�, 	] derived by
hen et al. [8]

ro · P1D
exto

[	]

Dext
= � · K1[�]

K0[�]
+ 4

�2

∫ ∞

0

u · exp[−(u2 + �2) · 	]

(u2 + �2) · (J2
0[u] + Y2

0[u])
du, (20)

n which K0 and K1 are the modified Bessel functions of the second
ind of order zero and one, J0 and Y0 are the Bessel functions of the
rst and second kind of order zero and u is a dummy variable of inte-
ration. The Bessel functions appear in Eq. (20) as a consequence
f the cylindrical geometry. These standard mathematical func-
ions are available in spreadsheet software and handbooks, such as
bramowitz and Stegun [13]. The argument, �, is a dimensionless
learance modulus defined as

≡ ro

√
kext

Dext
. (21)

q. (20) is valid for all � and simplifies in the zero clearance limit
o the following form involving the integral function, h[	], defined
y Amberg and Lindefors [1]

ro

Dext
(P1D

exto
[	])

�=0 = 2 · h[	] ≡ 4
�2

∫ ∞

0

exp[−u2 · 	]

J20[u] + Y2
0[u]

du

u
. (22)

The value of the integral on the right-hand-side of Eq. (20)
ecays to zero as 	 → ∞ reducing the overall expression to the
teady-state result obtainable from the mass transfer resistance of
ungay et al. [3]

ro · P1D
exto

Dext
= � · K1[�]

K0[�]
. (23)

The square root term in Eq. (21) constitutes a characteristic
ength scale,

≡
√

Dext

kext
. (24)

his quantity has been referred to as the penetration depth [3],
ince it provides a measure of the distance within the external
edium over which analyte concentration is perturbed by the dif-

usional exchange with the probe at steady state. However, in the
bsence of analyte clearance, � → ∞ since kext = 0. An infinite pen-
tration depth is a physically unrealistic interpretation for � . This
mpractical limit is avoided by incorporating axial diffusion, as in
he following section.

The radial diffusion model does have a useful limit for P1D
exto

→
corresponding to the probe immersed in a well-stirred fluid

edium. For this condition the overall permeability in Eq. (5)
educes to the probe permeability

℘o ≡
(

1
Pao

+ 1
Pmo

)−1
. (25)

he probe permeability can then be determined from a measure-
ent of the extraction fraction under the well-stirred condition,

ws,

℘o = −
(

Qa

So

)
· ln[1 − Ews]. (26)

Diffusion in the axial direction is expected to be a minor contrib-
tor to the annulus and membrane permeability. By contrast, axial
iffusion can have a pronounced influence on the external medium
ermeability, as demonstrated below.
.3. Radial and axial diffusion in isolated external medium

As a consequence of ignoring axial diffusion, the membrane
ength does not appear in the 1D permeability expressions (8), (10)
scale of the perfusate and membrane regions have been expanded relative to the
distant boundaries. The radial and axial positions and membrane length, Lm , have
been nondimensionalized with respect to membrane outer radius, ro .

and (20)–(23). The only explicit influence of membrane length on
extraction efficiency arises from the membrane area term, So, in
Eq. (7). This section describes a two-dimensional (2D) approach to
including axial diffusion that introduces dependence on membrane
length missing from the 1D radial diffusion model. The approach
uses the geometry shown in Fig. 1(a) and considers the external
medium in isolation from the probe. By analogy with the 1D nor-
malized concentration, U, in definition (17), this approach seeks a
normalized 2D concentration profile defined as

C[�, 
, 	] ≡ ce[�, 
, 	] − ce∞
ce[1, 
, 	] − ce∞

, (27)

subject to the boundary conditions at the membrane interface

C[�, 
, 	] = 1 at � = 1, (28)
and far from the membrane where the concentration approaches
the constant, uniform value

C[�, 
, 	] → 0 for large �∞ or 
∞, (29)
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s well as the corresponding initial condition of uniform concen-
ration throughout the external medium

[�, 
, 0] = 0 at 	 = 0. (30)

he nondimensional differential mass balance takes the form

∂C

∂	
= 1

�

∂

∂�

(
�

∂C

∂�

)
+ ∂2C

∂
2
− �2 · C. (31)

q. (31) was integrated numerically throughout the external
edium subject to the boundary and initial conditions (28)–(30).

olutions were obtained using the finite element software, Comsol
ultiphysics (Comsol, Inc., Burlington, MA). Values for P2D

exto
were

btained in normalized form from the definition

ro · P2D
exto

[	]

Dext
≡ − ro

Lm

∫ Lm/ro

0

(
∂C[�, 
, 	]

∂�

)
�=1

d
. (32)

Eqs. (28)–(32) reveal that the normalized permeability is a func-
ion of time and only the two dimensionless parameters, � and
m/ro, provided that the values of �∞ and 
∞ are chosen to be
ufficiently large. The above numerical approach yields equivalent
redictions to those of the radial model, if the external medium
eometry in Fig. 1(a) is collapsed by setting 
∞ = 0. For example,
imulations for the permeability would then be in agreement with
qs. (20), (22) and (23) for all values of �.

.4. Full model for validation of the isolated external medium
ermeability model

The utility of the isolated external medium model was inves-
igated by comparing predictions with those from a full finite
lement model combining the probe with the external medium.
he geometry for this more detailed model is shown schematically
n Fig. 1(b). The Navier–Stokes equations were solved to obtain the
erfusate velocity profile in the annular space between an inner
annula of radius, rcann, and the membrane inner surface of radius,
o. Then the differential mass balance equation for analyte convec-
ion and diffusion was solved for the annulus. Simultaneously, the

ass balance corresponding to Eq. (31) was solved for the external
edium, together with a similar equation for the membrane but
ithout the elimination term. Instead of Eq. (27), the normalized

D concentration was redefined as

[�, 
, 	] = c[�, 
, 	] − ce∞
cin − ce∞

, (33)

o that at the inlet, C̄a[0, 	] = 1, and at the distant boundaries, C = 0.
omsol Multiphysics was used for all of the simulations. To provide
pecific examples for applying the unified model to both in vitro
nd in vivo conditions, microdialysis of sucrose was simulated for a
robe implanted in a gel (representing an inert, quiescent medium)
nd in mouse brain. The parameter values required for the simula-
ions are presented in Tables 1–4. Table 1 contains the geometric
arameters values for a custom-made probe with a cellulosic mem-
rane. Table 2 provides the permeabilities and diffusion coefficient
alues estimated for sucrose in the annulus and membrane utiliz-
ng measurements in vitro in a well-stirred solution. Tables 3 and 4
ist the parameter values for sucrose microdialysis in the gel and in

ouse brain, respectively.

. Experiments
.1. Probe calibration in a well-stirred solution

Dialysis probes were immersed in a 20-mL beaker containing
.5 �Ci of 14C-sucrose dissolved in an artificial cerebrospinal fluid
nd Biomedical Analysis 55 (2011) 54–63

(aCSF) that was well-stirred and maintained at 37 ◦C. The concen-
tration of 14C in this external medium, ce∞ , was determined from
triplicate 100-�L aliquots. The probe was perfused with aCSF at a
volumetric flow rate of 2 �L/min and dialysate samples were col-
lected in pre-weighed vials at intervals of 10 min for 60 min for
measurement of the outflow concentration, cout. Each sample was
diluted with 5 mL of liquid scintillation cocktail (ScintiSafe 30%,
Fisher Scientific, Fair Lawn, NJ) and counted for 10 min using a liquid
scintillation counter (LS6000SC, Beckman Instruments Inc., Fuller-
ton, CA) with an efficiency of 95% for 14C activity. Extraction fraction
was calculated from Eq. (7) reduced to the form for sampling

Ews = cout

ce∞
. (34)

The probe permeability, P℘o , was calculated from Ews using
Eq. (26) and this value was then used to obtain the membrane
permeability, Pmo , from Eq. (25) after estimating the annulus per-
meability, Pao , from Eq. (8). The membrane permeability was used
to calculate the effective membrane diffusion coefficient from Eq.
(10). The calculations employed the geometric parameter values
from Table 1.

3.2. Transient extraction fraction measurement for probes
inserted into gel

A 0.3% (w/v) solution of agarose in aCSF was prepared by adding
agarose to warm aCSF in a 100-mL beaker (6-cm dia; 6-cm height).
After the addition of 15 �Ci of 14C-sucrose, triplet 10-�L aliquot
samples were taken for the determination of the activity, ce∞ . The
solution was then gelled by cooling and a microdialysis probe was
implanted into the gel under stereotaxic control. The assembly,
including the perfusate syringe and pump, was placed in an incu-
bator and allowed to equilibrate to the set temperature of 37 ◦C.
The probe was perfused at 2 �L/min and dialysate samples were
collected in pre-weighed vials at intervals of 10 min for 120 min.
Each sample was diluted with 5 mL of liquid scintillation cock-
tail (ScintiSafe 30%, Fisher Scientific, Fair Lawn, NJ) and counted
for 10 min using a liquid scintillation counter (LS6000SC, Beckman
Instruments Inc., Fullerton, CA) with an efficiency of 95% for 14C
activity. The outflow activity, cout, was divided by ce∞ as in Eq. (34)
to obtain the variation over time in the sampling extraction fraction,
Egel.

4. Results and discussion

4.1. External medium permeability for diffusion restricted to the
radial direction

When diffusion is restricted to the radial direction, the nor-
malized external medium permeability is a function only of time
(when expressed nondimensionally) and the clearance modulus,
�. This 1D permeability is applicable only to probes of long mem-
brane aspect ratio (Lm/ro → ∞ ). The time variation is illustrated in
Fig. 2(a) for arbitrary values of the modulus over the partial range,
0 ≤ � ≤ 1. The smaller the modulus value, the slower the approach
to steady-state and the lower the steady-state permeability. For
zero clearance (� = 0), the approach to steady-state is extremely

slow and the steady-state 1D permeability value is zero. The dot-
ted lines indicate the result for the arbitrary dimensionless time of
	 = 100 chosen by Chen et al. [8] to represent a quasi-steady-state
for microdialysis in a gel. The normalized 1D permeability value at
this arbitrary time point, 	 = 100, is 0.36.
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Table 1
Geometric parameters values for custom probes constructed with cellulosic membrane.

Symbol Description Value Units Source

Lm Length of accessible membrane 0.2 cm Nominal value
rcann Outer radius of probe internal cannula 0.0075 cm Measured
ri Membrane inner radius 0.0120 cm Nominal value
ro Membrane outer radius 0.0140 cm Nominal value
� Annulus radius ratio 0.61 – rcann/ri

Lm/ro Membrane aspect ratio 14.3 –

Table 2
Model parameters values for microdialysis of sucrose in vitro for probes from Table 1 immersed in a well-stirred solution at 37 ◦C.

Symbol Description Value Units Source

Qa Perfusate volumetric flow rate 2 �L/min Calibrated pump setting
Ews Concentration extraction fraction 0.12 ± 0.01 – Measured (mean ± SD, n = 4)
P℘o Probe diffusive permeability 0.014 cm/min −(Qa/So) · ln[1 − Ews], Eq. (26)
Da Free solution diffusion coefficient 4.2 × 10−4 cm2/min Aqueous solution at 37 ◦C [15]

Pao Steady-state annulus diffusive permeability 0.18 cm/min
(

2.0+0.42∗�
1−�

)
·
(

Da
ro

)
, Eq. (8)

Pmo Steady-state membrane diffusive permeability 0.015 cm/min
(

1
P℘o

− 1
Pao

)−1
, Eq. (25)

Dm Effective diffusion coefficient in membrane 3.2 × 10−5 cm2/min Pmo · ro · ln[ro/ri], Eq. (10)

Table 3
Model parameters values for microdialysis of sucrose in vitro for probes from Table 1 implanted in an inert, quiescent aqueous medium (0.3% agarose gel) at 37 ◦C.

Symbol Description Value Units Source

Qa Perfusate volumetric flow rate 2 �L/min Calibrated pump setting
Dext = Da Diffusion coefficient 4.2 × 10−4 cm2/min Aqueous solution at 37 ◦C [15]
kext Clearance rate constant 0 – Inert medium
Kext Distribution coefficient 1 – Nominal value
Text Diffusion time constant 0.47 min r2

o · Kext /Dext = r2
o /Da√

.012

4
e

d
e
d
b
d
m
�
t
d
u
r
p
v
(
m

T
M

� Clearance modulus 0
P2D

exto
[t → ∞] Steady-state 2D permeability 0

.2. External medium permeability generalized by including the
ffects of axial diffusion

Under most microdialysis conditions, the direction of analyte
iffusion in the adjacent medium is only constrained by the pres-
nce of impermeable obstacles, such as the probe shaft, and the
iffusional properties of the medium. Incorporating diffusion in
oth radial and axial directions in the model simulations pro-
uces changes in both the magnitude and time course of the
edium permeability. As illustrated in Fig. 2(b), for most of the
range the transients in the 2D permeability are similar in shape

o corresponding 1D results displayed in Fig. 2(a). Including axial
iffusion leads to significant increases in the 2D permeability val-
es relative to the 1D radial diffusion predictions even for the
elatively high aspect ratio of Lm/ro = 33.3 used in these exam-

le calculations. The difference is progressively greater for small
alues of �. The effect is most noticeable for zero clearance
� = 0), where decay is still slow at long times, but the 2D per-

eability does approach a finite value as t → ∞ . Thus, including

able 4
odel parameters values for microdialysis of sucrose in vivo for probes from Table 1 imp

Symbol Description Val

Qa Perfusate volumetric flow rate 2
De Extracellular diffusion coefficient 1.8
�e Extracellular volume fraction 0.2
Dext Diffusion coefficient in tissue 3.7
kext Rate constant for elimination from tissue 1.9
Kext Distribution coefficient 0.2
Text Diffusion time constant in tissue 1.0

� Clearance modulus 0.1
P2D

exto
[t → ∞] Steady-state tissue 2D permeability 0.0
– ro kext /Dext , Eq. (21)
cm/min Simulation

axial diffusion obviates the need expressed by Chen et al. [8] to
postulate that the transient achieves a quasi-steady state at the
arbitrary dimensionless time of 100. The asymptotic value from
the 2D simulation in Fig. 2(b) is 0.32, which is close to the value
of 0.36 for the assumed quasi-steady state 1D result shown in
Fig. 2(a).

The dependence of the normalized external medium 2D perme-
ability on the second dimensionless parameter, Lm/ro, is illustrated
for steady-state conditions in Fig. 3. The abscissa in Fig. 3 is the
clearance modulus defined in Eq. (21). The permissible range for the
modulus is 0 ≤ � < ∞ , but only results for the range 0 ≤ � ≤ 1 are
shown. The family of solid curves results from selecting arbitrary
values for the aspect ratio. As an example, the curve labeled Lm/ro = 4
corresponds to commercially available probes with a membrane
diameter of 0.5 mm and a length of 1 mm. The prediction from the

1D radial diffusion model, Eq. (23), is included as the lower-most
curve corresponding to Lm/ro → ∞ .

The solid curves in Fig. 3 are nearly straight lines except at low
values of � and large values of Lm/ro. The nearly straight portions

lanted in mouse brain.

ue Units Source

�L/min Calibrated pump setting
6 × 10−4 cm2/min Dog caudate [15]

– Nominal value
× 10−5 cm2/min De · �e

× 10−3 mL/(min cm3) Unpublished measurements
– �e

5 min r2
o · Kext /Dext = r2

o /De

– ro

√
kext /Dext , Eq. (21)

013 cm/min Simulation
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Fig. 2. Transients in the external medium permeability normalized with respect
to the membrane outer radius, ro , and the analyte diffusion coefficient, Dext . Time,
t, is nondimensionalized relative to the diffusion time constant, Text = r2

o /Dext . The
arbitrary values of the clearance modulus represent only a portion of the range,

0 ≤ � = ro

√
kext /Dext < ∞, where kext is an overall first order rate constant for the

processes removing analyte from the medium. (a) One-dimensional model (1D) in
which diffusion is restricted to the radial direction. Applicable only to microdial-
ysis probes for which the ratio of membrane length, Lm , to outer radius is high
(
d
H

c

E
m
4

b
a
s
z
T
o
r
l
s
s
n
t

Fig. 3. Steady-state values for external medium permeabilities from the isolated
medium 2D model with radial and axial diffusion. Axial diffusion results in an
increase in the external medium permeability. The magnitude of the effect is a func-
tion of the membrane length-to-outer radius aspect ratio, Lm/ro , and the analyte
clearance modulus, �. The latter is the dimensionless ratio of the first order clear-
ance rate constant, kext , and the effective diffusion coefficient, Dext , defined in Eq.
(21). Solid curves are predictions for arbitrary choices of the aspect ratio, except for
the lower-most curve (labeled Lm/ro → ∞ ) from Eq. (23) for 1D diffusion restricted

4.3. Extraction efficiency
Lm/ro → ∞ ). (b) Two-dimensional model (2D) that includes both axial and radial
iffusion for an illustrative aspect ratio of 33.3 corresponding to the probes used by
öistad et al. [16].

an be well represented by the following algebraic formula

ro · P2D
exto

Dext
= 0.4 + 1.01 · � + 1.2ro

Lm
. (35)

q. (35) yields approximate permeability values for current com-
ercially available probes, whose aspect ratios range within about
< Lm/ro < 100.

The intercepts on the vertical axis (� = 0) in Fig. 3 represent the
ehavior expected for a probe in an inert quiescent medium, such
s a gel. For the radial diffusion model the inert quiescent medium
teady-state is represented by the origin where the permeability is
ero, as no additional solute enters or leaves the external medium.
his would correspond to a uniform dimensionless concentration
f U = 1, which is in conflict with the distant boundary condition
equiring U → 0 as � → ∞ . By contrast, including axial diffusion in a
arge, but finite, external medium creates the possibility for steady-

tate solutions that are insensitive to the size of the medium. These
teady-state solutions for probes with finite aspect ratios yield the
onzero 2D permeability values given by the intercepts on the ver-
ical axis in Fig. 3.
to the radial direction. The intercepts on the vertical axis represent behavior for
an inert (� = 0), quiescent medium. The dashed lines are the prediction from the
equivalent length model of Tong and Yuan [10], Eq. (37). The filled circles denote
the illustrative steady-state limits for � = 0.1 from the transient predictions in Fig. 4.

The incorporation of axial diffusion led Tong and Yuan [10] to
propose the concept of an equivalent length defined as

LE = Lm + � · �, (36)

in which � is an empirical constant with an estimated value of
0.369 and � is the penetration depth from Eq. (24). Recasting the
Tong and Yuan result in terms of the external medium permeability
yields

ro · P2D
exto

Dext
= � + �(ro/Lm)

K0/K1
. (37)

Eq. (37) is plotted as the dashed curve in Fig. 3 for the aspect ratio
that Tong and Yuan used in their simulations, Lm/ro = 12. Their curve
parallels the 2D isolated medium model results for most of the �
range. However, the equivalent length model fails for values of �
approaching zero and is thus not applicable to conditions in which
there are no analyte clearance processes, such as an inert quiescent
medium.

Axial diffusion affects the nature of transient, as well as
steady-state, microdialysis. Nondimensionalizing the governing
equations generalizes the predictions. In vivo microdialysis inher-
ently involves an initial transient as illustrated in Fig. 4 for
simulations of sucrose microdialysis in mouse brain characterized
by the clearance modulus value of � = 0.1 from Table 4. The two
curves bracket the range of aspect ratios for the available com-
mercial probes. Shorter probes yield faster transients, as well as
higher permeabilities. The permeability decays to within 10% of the
steady-state value by 6 min (	 = 12) for Lm/ro = 4, as contrasted with
16 min (	 = 35) for Lm/ro = 100 for the same criterion. The steady-
state values from Fig. 4 correspond to the two filled circles in Fig. 3.
To demonstrate the unified applicability, the proposed modeling
approach was applied to determining the transient and steady-
state extraction fractions for sucrose under both in vitro and in vivo



P.M. Bungay et al. / Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 54–63 61

Fig. 4. Transient approach to steady-state for the external medium permeability
predicted by the isolated medium 2D model. Displayed are the results of illustrative
simulations for the clearance modulus value, � = 0.1, representative of sucrose in the
brain, and two values of the membrane aspect ratio spanning the approximate range
for commercial microdialysis probes, Lm/ro = 4 and 100. The dotted horizontal lines
indicate the respective steady-state values of the permeability normalized using
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Fig. 5. Validation results for use of the transient external medium permeability to
predict the time course in extraction fraction, E. (a) In vitro: sucrose microdialysis
for probe in inert quiescent medium based on parameter values in Table 3. Solid
circles are measurements for sampling from 0.3% agarose gel (mean ± SD, n = 5). (b)
In vivo: sucrose microdialysis for probe in mouse brain based on parameter values in
Table 4. The predictions from the full finite element model of Section 2.4 combining
probe and external medium are given by the solid curves (transient) and horizontal
dotted lines (steady-state). The dashed curves were obtained using the exponential
expression for extraction fraction, Eq. (7) with the explicit steady-state permeability
expressions for the annulus (P ), Eq. (8), and the membrane (P ), Eq. (10), and the
he effective diffusion coefficient in the tissue, Dext . Time, t, is scaled relative to the
iffusion time constant, Text = r2

o · Kext /Dext , which for sucrose microdialysis in the
rain is estimated to be 1.05 min (Table 4). The values for Lm/ro = 100 are less than 5%
bove the values predicted for Lm/ro → ∞ from the radial diffusion model Eq. (20).

onditions. The in vitro results are displayed in Fig. 5(a) and in vivo
alues in Fig. 5(b). For both situations, finite element simulations
ere obtained for the full model 2D model of Section 2.4 and the

solated external medium 2D model of Section 2.3. The full model
imultaneously simulates transport in the perfused probe and the
xtermal medium to predict the outflow concentration, cout, given
he inflow and external medium concentrations, cin and ce∞ . The
solated external medium model predicts the transient external

edium permeability, which is then used together with the steady-
tate annulus and probe permeabilities to approximate the time
ourse of the extraction fraction from Eq. (7). The good agreement
etween the two methods for calculating extraction fraction gives
upport for the validity of the isolated external medium approach.
he decay in the extraction fraction is dominated by the exter-
al medium permeability transient as seen by the similarity in the
hape of the curves between Figs. 4 and 5.

Superimposed in Fig. 5(a) are the extraction fraction values mea-
ured using probes inserted in 0.3% agarose gel in the experiments
f Section 3.2. The measured values are in good agreement with the
nite element predictions.

The contribution of each medium to the extraction fraction tran-
ient is related to the rate of change in the amount of sucrose in the
edia. Except at very early times, most of the change occurs in the

xternal medium. In the in vitro case, the sucrose extracted by the
robe is all coming from the amount initially present in the external
edium. The rate of approach to the quasi-steady-state in Fig. 5(a)

ecomes very slow as the sucrose has to diffuse from greater dis-
ances. The in vivo case represents sucrose being supplied by uptake
y the brain from the blood. At steady state no supply is occurring
ar from the probe because the distant tissue is in equilibrium with
he blood. The sucrose arriving at the probe in vivo is coming from a

uch smaller volume of tissue than the volume of gel in the in vitro
ase.

The steady-state gel 2D permeability (0.012 cm/min) given in
able 3 is close to that of probe (0.014 cm/min), so both contribute

bout equally to determining the steady-state in vitro extrac-
ion fraction. However, the steady-state brain 2D permeability
0.0013 cm/min) is an order of magnitude smaller than the probe
alue. Consequently, the in vivo extraction fraction is dominated by
he brain permeability. The difference in the relative magnitudes of
ao mo

transient isolated external medium 2D permeability values (P2D
exto

) from the finite
element simulations of Section 2.3. The same probe with a length-to-radius ratio of
Lm/ro = 14.3 was modeled in both cases. The clearance modulus is denoted by �.

the gel and brain permeabilities is the reason that the in vitro and
in vivo extraction fractions in Fig. 5 differ by about a factor of five.

4.4. Spatial concentration profiles

Illustrative concentration profiles for the in vitro and in vivo
cases are displayed in Fig. 6. The concentration profiles decay to
essentially background levels within finite distances as a result of
including axial diffusion in the 2D simulations. For the in vivo case
with � = 0.1, the penetration depth parameter, � , from Eq. (24)
provides a useful measure of the extent of sucrose penetration into
the surrounding tissue. The value is � = 0.14 cm and at this radial
distance the midplane extracellular concentration at steady-state
is about 90% of the uniform distant concentration. By contrast, the
penetration depth parameter is of little utility for the in vitro case
of the inert gel (� = 0), since it has an infinite value (� = ∞ ). These
findings underscore the importance of including axial diffusion in
the modeling.

The relative magnitudes of the permeability values are reflected
in the concentration drops across the respective media. For exam-

ple, in the quiescent gel case about half of the concentration drop
occurs across the probe and half across the gel, because the probe
permeability from Table 2 is comparable in size to the quasi-
steady-state gel permeability from Table 3. In the in vivo case, the
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Fig. 6. Sucrose concentration profiles for sampling in vivo (brain) and in vitro (gel)
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�o · Pexto
[	]

Dext
= 1 + �s · (1 − erfc[�s · √

	]) + 1√
�	

exp[−�s
2 · 	].

(A.9)
rom the 2D simulations of Fig. 5(a) and (b) for a probe of aspect ratio, Lm/ro = 14.3.
he steady-state concentration within the probe and the external medium is plotted
ersus the logarithm of radial distance from the probe axis at the midplane of the
robe (z = 0.1 cm).

teady-state brain permeability from Table 4 is so much smaller
han the probe permeability that almost all of the concentration
rop occurs within the brain.

. Conclusions

Including the axial contribution of analyte diffusion in the exter-
al medium is key to providing a comprehensive quantitative
escription of microdialysis jointly applicable to various in vitro
nd in vivo conditions. As illustrated in the present work, this can be
ccomplished for transient behavior through finite element analy-
is. One demonstration of the utility of finite element approaches
ombined modeling of both the probe and external medium. The
impler alternative simulated just the external medium in isola-
ion. This latter approach generated transient permeability profiles
or the external medium, which were then used together with
teady-state probe permeability descriptions to predict the tran-
ient extraction fraction. The isolated external medium approach
roduced an algebraic expression that provides empirical estimates
f the steady-state external medium permeability. This permits
teady-state analyses to be performed without the need for addi-
ional finite element simulations. Among the additional advantages
s an improved ability to compare results for probes with different

embranes and different aspect ratios.
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ppendix A. Equivalent sphere model for microdialysis

An earlier proposal to compensate for the deficiency in the radial
iffusion model of Section 2.1 was to approximate the effect of 2D
iffusion by replacing the accessible cylindrical outer surface of the
embrane with a spherical surface of the same area [3]. The radius

f this equivalent sphere is given by

o =
√

ro · Lm

2
. (A.1)
The earlier analysis only considered the steady-state situation
n which no mechanisms were present for eliminating analyte from
he medium. Here the analysis is extended by including first order
learance processes and predicting transient behavior as well.
nd Biomedical Analysis 55 (2011) 54–63

Reformulating the external medium mass balance Eq. (31) in
spherical coordinates gives

∂C[�, 	]
∂	

= 1
�2

∂

∂�

(
�2 ∂C[�, 	]

∂�

)
− �s

2C[�, 	], (A.2)

in which the dimensional spherical radial coordinate, � ′, is nondi-
mensionalized as

� ≡ � ′

�o
, (A.3)

the concentration is normalized as in Eq. (27)

C[�, 	] = ce[�, 	] − ce∞
ce[1, 	] − ce∞

, (A.4)

and the modified clearance modulus is defined as

�s ≡ �o

√
kext

Dext
. (A.5)

With the aid of Eq. (14.46) from Crank [14] the solution to Eq.
(A.2) for the transient concentration profile is

C[�, 	] =
exp[−�s · (� − 1)] · erfc

[
(� − 1/2

√
	) − �s

√
	
]

2�

+
exp[�s · (� − 1)] · erfc

[
(� − 1/2

√
	) + �s

√
	
]

2�
. (A.6)

Letting 	 → ∞ in Eq. (A.6) and employing the limits erfc [∞] = 0 and
erfc [−∞] = 2 yields the steady-state profile

C[�, ∞] =
exp

[
−�s · (� − 1)

]
�

. (A.7)

As in Eq. (19) the external medium permeability is defined by

�o · PSph
exto

Dext
≡ −

(
∂C

∂�

)
�=1

. (A.8)

Substituting Eq. (A.6) into Eq. (A.8) leads to

Sph
Fig. A1. Comparison of normalized external medium permeability predictions from
the models that represent the probe membrane as a cylinder or a sphere of equiva-
lent area. The normalized permeabilities are plotted against the inverse of the aspect
ratio, Lm/ro , for two illustrative values of the clearance modulus, �.
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The predictions from the above equivalent sphere expressions
an be related to those from 2D cylindrical coordinate analysis of
ection 2.3 through the geometric interrelationships, Eq. (A.1), and

s =
(

�o

ro

)
· � =

√
Lm

(2 · ro)
· �. (A.10)

ubstituting Eqs. (A.1) and (A.10) into Eq. (A.9) gives

ro · PSph
exto

[	]

Dext
=

√
2 · ro

Lm
·
{

1 +
√

Lm

2 · ro
� ·

(
1 − erfc

[√
Lm

2 · ro
� · √

	

])

+ 1√
�	

exp

[
− Lm

2 · ro
�2 · 	

]}
. (A.11)

or steady state this simplifies to

ro · PSph
exto

Dext
=

√
2 · ro

Lm
+ �. (A.12)

As illustrated in Fig. A1 the predictions from Eq. (A.12) are

n good agreement with those from the 2D simulations for short
robes (2 · ro/Lm ∼ 1), but diverge for long probes (2 · ro/Lm → 0). The
greement is better over more of the aspect ratio range for inert
uiescent conditions, � = 0, for which the equivalent sphere model
as originally proposed.

[

[
[
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